Computer Vision: Looking Back to Look Forward

Svetlana Lazebnik
IRIM Short Course
Spring 2020
Outline of lectures

Tues. 1/28: Where are we going, where have we been?
Wed. 1/29: Stepping back: What is the nature of visual perception?
Thurs. 1/30: History of ideas in recognition – Part I

Tues. 2/4: History of ideas in recognition – Part II – *TSRB banquet hall*
Wed. 2/5: Emerging trends – or, what should we be working on?
Thurs. 2/6: Ethical issues for computer vision researchers
History of Recognition: Outline

Object instance recognition

Object category recognition

Texture recognition

Scene recognition
History of Recognition: Outline

• **Object instance recognition**
 • 3D geometric
 • Blocks world
 • Alignment
 • Aspect graphs
 • Invariants
 • Primitive-based approaches: generalized cylinders, geons
 • Appearance-based
 • Eigenfaces
 • Appearance manifolds
 • Color indexing
 • Keypoint-based
 • Schmid & Mohr
 • Lowe
 • Video Google

• **Texture recognition**
 • Textons
 • Filter banks
 • Histograms

• **Object category recognition**
 • Pictorial structures
 • Early statistical: Late 90s face detectors
 • Constellation models
 • Bags of features
 • HOG, DPMs

• **Scene recognition**
 • Early knowledge-based
 • GIST
 • Bags of features, pyramids
History of Recognition: Outline

Object instance recognition

Object category recognition

Texture recognition

Scene recognition
Recognizing known, rigid 3D objects

- Recognition as inverse graphics
- Ignore image intensities, focus on edges or point features
- Main problem is alignment, or estimation of object pose that would give rise to projected image

J. Mundy, Object recognition in the geometric era: A retrospective, 2006
Model-based methods: Alignment

Perkins (1978)
Grimson & Lozano-Perez (1984)
Lowe (1985)
Ayache & Faugeras (1986)
Huttenlocher & Ullman (1987)
View-based methods: Aspect graphs

Mundy (2006)

Ikeuchi & Kanade (1988)
“Model-free” methods: Invariants

Examples of model features used to compute invariants

J. Mundy and A. Zisserman (eds.), *Geometric Invariance in Computer Vision*, 1992
3D shape primitives: Generalized cylinders

Binford (1971), Agin & Binford (1973)

Brooks (1981)

Zerroug & Nevatia (1994)

Zisserman et al. (1995)
Figure 5-3. This diagram illustrates the organization of shape information in a 3-D model description. Each box corresponds to a 3-D model, with its model axis on the left side of the box and the arrangement of its component axes on the right. In addition, some component axes have 3-D models associated with them, as indicated by the way the boxes overlap. The relative arrangement of each model's component axes, however, is shown improperly, since it should be in an object-centered system rather than the viewer-centered projection used here (a more correct 3-D model is given by the table shown in Figure 5-5c). The important characteristics of this type of organization are: (1) Each 3-D model is a self-contained unit of shape information and has a limited complexity; (2) information appears in shape contexts appropriate for recognition (the disposition of a finger is most stable when specified relative to the hand that contains it); and (3) the representation can be manipulated flexibly. This approach limits the representation's scope, however, since it is only useful for shapes that have well-defined 3-D model decompositions. (Reprinted by permission from D. Marr and H. K. Nishihara, "Representation and recognition of the spatial organization of three-dimensional shapes," Proc. R. Soc. Lond. B 200, 269–294.)

Marr & Nishihara (1978)
Psychological theory: Recognition by components

Primitives (*geons*)

- Cube: Straight Edge, Straight Axis, Constant
- Wedge: Straight Edge, Straight Axis, Expanded
- Pyramid: Straight Edge, Straight Axis, Expanded
- Cylinder: Curved Edge, Straight Axis, Constant
- Barrel: Curved Edge, Straight Axis, Exp & Cont
- Arch: Straight Edge, Curved Axis, Constant
- Cone: Curved Edge, Straight Axis, Expanded
- Expanded Cylinder: Curved Edge, Straight Axis, Expanded
- Handle: Curved Edge, Curved Axis, Constant
- Expanded Handle: Curved Edge, Curved Axis, Expanded

Objects

Biederman (1987)

Geometric recognition: Discussion

• Summary
 • Emphasis on 3D modeling was sign of “right” thinking
 • People liked the math, combinatorics involved in reasoning about 3D shape, invariants, and aspect graphs
 • For rigid objects, some robustness to occlusion, viewpoint change was achieved
 • Practical applications in industrial inspection, robotics, target recognition
 • Recognition by components conceptually appealing, gave rise to supporting theories in cognitive science

• What went wrong?
 • There was no reliable way to establish matches between model and image features
 • Numerical pose estimation techniques were not mature enough?
 • Nobody knew how to or compute part decompositions of general categories or model intra-class variations of 3D shape
Today: Revival of 3D primitives?

“Here we do not wish to reprise the classic debates on the value of volumetric primitives – while they were oversold in the 70s and 80s, they suffer from complete neglect now, and we hope that this demonstration of feasibility of learning how to assemble an object from volumetric primitives will reignite interest.”

Appearance-based instance recognition

• Maybe grayscale (or color) images are not as scary as they seem?

COIL-100 Dataset
Color histograms

M. Swain and D. Ballard, Color Indexing, IJCV 1991
Eigenfaces

Appearance manifolds

H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, IJCV 1995

J. Mundy et al., An Experimental Comparison of Appearance and Geometric Model Based Recognition, 1996
Keypoints + local appearance

Keypoints: corners (Harris & Stephens, 1988)
Descriptors: Local jets (Koenderink & Van Doorn, 1987)

Scale-invariant feature transform (SIFT)

D. Lowe, *Object recognition from local scale-invariant features*, ICCV 1999
D. Lowe, *Distinctive image features from scale-invariant keypoints*, IJCV 2004
Covariant keypoints + invariant descriptors
Large-scale image search

• Borrow ideas from text indexing and retrieval!
 • Visual words, inverted indices, stop words, query expansion...

Figure source: K. Grauman and B. Leibe

Sivic & Zisserman (2003), Nister & Stewenius (2006), Philbin et al. (2007), etc.
Large-scale image registration, reconstruction

San Marco Square: 13,699 images, 4,515,157 points

Snavely et al. (2006), Agarwal et al. (2009), Frahm et al. (2012), etc.

Sattler et al. (2011)
Instances

Alignment
Aspect graphs
Generalized cylinders

Invariants

Appearance-based methods: Discussion

• Summary
 • In the early- to mid-90’s, people realized that you could use images to represent themselves
 • This was supported by viewpoint-centric theories of human recognition – see, e.g., Edelman & Weinshall (1990), Tarr & Pinker (1991)
 • Initial appearance-based models (eigenfaces, appearance manifolds) were global and lacking invariance
 • In the late 90’s, methods based on local keypoint invariants achieved a good combination of discriminability, robustness and invariance

• What went wrong?
 • Nothing really, except that keypoint detectors and descriptors (and subsequent indexing pipelines) had to be extensively hand-engineered
History of Recognition: Outline

Object instance recognition

Object category recognition

Texture recognition

Scene recognition

MISSION: ACCOMPLISHED
Texture recognition

Statistics of textons

- Julesz (1962, 1981)

Autocorrelation, co-occurrence functions

- Haralick (1979)

Filter banks, pyramids

K-means clustering, texton vocabularies

- Leung & Malik (1999)

Blobs

- Voorhees & Poggio (1987)

Blobs + textons

- Lazebnik et al. (2003)
Texture recognition: Discussion

• Summary
 • Texture recognition was the only sub-field in which statistical methods held sway from the beginning
 • Dominant model is local statistics or histograms of local appearance
 • For a long time, this was assumed to be appropriate only for textures
 • At this point, texture is mainly interesting as part of scenes
History of Recognition: Outline

Object *instance* recognition

Texture recognition

Object *category* recognition

Scene recognition
Category recognition: Deformable templates

D’Arcy Wentworth Thompson, *On growth and form*, 1917
Deformable templates

Deformable templates

Yuille (1991)

Active shape models

Cootes & Taylor (1995)
Pictorial structures revived

P. Felzenszwalb and D. Huttenlocher, Efficient matching of pictorial structures, CVPR 2000
P. Felzenszwalb and D. Huttenlocher, Pictorial structures for object recognition, IJCV 2005
Finding people was *really hard*

Fig. 6. Typical control images wrongfully classified as containing naked people. These images contain people or skin-colored material (animal skin, wood, bread, off-white walls) and structures which the geometric grouper mistakes for spines or girdles. The grouper is frequently confused by groups of parallel edges, as in the industrial image.

Fleck, Forsyth & Bregler (1996)

Fig. 17. A negative image for which a human assembly was found. The assembly indeed looks like a configuration of a person. A better segment finder would not produce these segments and thus a person would not be detected. The white regions in the image are the pixels that have been masked out because they could not belong to a person due to their color.

Ioffe & Forsyth (2001)
Constellation models

Deformable templates: Discussion

• Summary
 • Idea: represent a category as a group of meaningful parts (or primitives) that can deform in some constrained way
 • Optimize an energy function (possibly derived from a probabilistic formalism) to find the “best” part layout in the image
 • Such models are also known as part-based and are conceptually similar to primitive-based geometric models of the 70’s and 80’s

• What went wrong?
 • Until the mid-2000s, there were no reliable part (or primitive) detectors
Features and classifiers

Support vector machines

Rowley, Baluja, Kanade (1998)

Osuna, Freund, Girosi (1997)

Statistics of feature responses, probabilistic classifier

\[
\prod_{j=1}^{n_{\text{magn}}} \prod_{i=1}^{n_{\text{subs}}} \frac{P(q_{1j}|\text{object})P(\text{pos}_{i}|q_{2i}, \text{object})}{P(q_{1j}|\text{object})} \frac{\text{object}}{n_{\text{subs}}} \frac{\lambda}{P(\text{object})}
\]

Schneiderman & Kanade (1998)

Neural network

Rowley, Baluja, Kanade (1998)

Support vector machines

Osuna, Freund, Girosi (1997)

Rectangle features, boosting

Viola & Jones (2001)
Implicit shape models

B. Leibe, A. Leonardis, and B. Schiele, *Combined Object Categorization and Segmentation with an Implicit Shape Model*, ECCV Workshop on Statistical Learning in Computer Vision, 2004
Bags of features

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)
Spatial pyramids

Lazebnik, Schmid & Ponce (2006)
Caltech-101 dataset

http://www.vision.caltech.edu/Image_Datasets/Caltech101/

L. Fei-Fei, R. Fergus, and P. Perona, Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories, CVPR 2004 Workshop on Generative-Model Based Vision
Detection: Histograms of oriented gradients

PASCAL VOC dataset

Challenge classes:

Person: person
Animal: bird, cat, cow, dog, horse, sheep
Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Dataset size (by 2012): 11.5K training/validation images, 27K bounding boxes, 7K segmentations
Discriminative deformable part models

Discriminative deformable part models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part-Based Models, PAMI 2009
Progress on PASCAL detection

Before CNNs

After CNNs
Datasets

Caltech-4 Caltech-101

PASCAL VOC Face datasets

Object categories

Alignment Aspect graphs
Generalized cylinders

Invariants Keypoints
Appearance models

Textons Filter banks

Misc. statistics

Textons

Deformable templates

Probabilistic models Constellation models
Features & classifiers

Pictorial structures

Features & classifiers

Implicit shape models

Bags of features

HOG

DPM

Pyramids

Texton histograms

Bags of features

Probabilistic models

Misc. statistics

Generalized cylinders

Aspect graphs

Alignment

Textons

Deformable templates

Probabilistic models
Developments after 2010: Selective search for detection

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for Object Recognition, IJCV 2013

ROI features: color SIFT, codebook of size 4K, spatial pyramid with four levels = 360K dimensions
Developments after 2010: COCO dataset

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset.
COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- 250,000 people with keypoints

http://cocodataset.org/#home
Developments after 2010: Instance-level detection and segmentation

Category-level recognition: Discussion

• Summary
 • In deep neural networks, deformable templates have converged with features and classifiers, winning the day
 • We now have clean end-to-end architectures for simultaneously handling instance detection, classification, and segmentation

• What went wrong?
 • We are saturating ImageNet and COCO
 • We are no closer to understanding what a “category” is – existing label taxonomies are as unsatisfying as ever
 • Existing datasets and models assume that every category is common and known
 • We’re still not sure whether our category models need parts or explicit 3D information
Do we need explicitly compositional models?

A. Brock, J. Donahue, K. Simonyan, Large scale GAN training for high fidelity natural image synthesis, ICLR 2019
Do we need explicitly compositional models?

A. Brock, J. Donahue, K. Simonyan, Large scale GAN training for high fidelity natural image synthesis, ICLR 2019
Do we need explicit 3D representations?

https://twitter.com/phillip_isola/status/1066574964793458689
Do we need explicit 3D representations?

Figure 1. HoloGAN learns to separate pose from identity (shape and appearance) only from unlabelled 2D images without sacrificing the visual fidelity of the generated images. All results shown here are sampled from HoloGAN for the same identities in each row but in different poses.

T. Nguyen-Phuoc et al., HoloGAN: Unsupervised Learning of 3D Representations From Natural Images, 2019
Towards category-level 3D models

Towards category-level 3D models

S. Zuffi, A. Kanazawa, M. Black, Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images, CVPR 2018
Towards category-level 3D models

A. Kanazawa, S. Tulsiani, A. Efros, J. Malik, Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV 2018
History of Recognition: Outline

Object \textit{instance} recognition

Object \textit{category} recognition

Texture recognition

Scene recognition

MISSION: ACCOMPLISHED
Early scene understanding

• Has everything: color, super-pixels, bottom-up segmentation, top-down parsing, inter- and intra-region reasoning, Bayesian formulation!

Y. Yakimovsky and J. Feldman, A semantics-based decision theory region analyzer, IJCAI 1973
Early scene understanding

A. Hanson and E. Riseman, VISIONS: A computer system for interpreting scenes, Computer Vision Systems, 1978
Early scene understanding

What went wrong?

Ohta & Kanade (1978)
What went wrong?
Structured scene representations revisited

Appearance-based scene representation: GIST

Appearance-based scene representation: GIST

• Matching of scenes based on GIST works surprisingly well – *given a large enough dataset*

Semantic segmentation

MSRC Dataset (2006)
TextonBoost

\[
\log P(c | x, \theta) =
\]

\[
\sum_i \psi_i(c_i, x; \theta_\psi) + \pi(c_i, x; \theta_\pi) + \lambda(c_i, i; \theta_\lambda)
\]

\[
+ \sum_{(i,j) \in \mathcal{E}} \phi(c_i, c_j, g_{ij}(x); \theta_\phi)
\]

J. Shotton, J. Winn, C. Rother, and A. Criminisi,

TextonBoost: Joint Appearance, Shape And Context Modeling For Multi-class Object Recognition And Segmentation, ECCV 2006
Semantic segmentation with superpixels and detectors

Semantic segmentation today: Mask R-CNN

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)
Scene understanding: What’s next?

• We have challenging standardized benchmarks, though we’re beginning to saturate current datasets (COCO)
• Need to push more on 3D and situated scene understanding

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, Panoptic segmentation, CVPR 2019

M.-F. Chang et al., Argoverse: 3D Tracking and Forecasting with Rich Maps, CVPR 2019
History of Recognition: Summary

• **Instance recognition**
 • 3D geometric
 • Blocks world
 • Alignment
 • Aspect graphs
 • Invariants
 • Primitive-based approaches: generalized cylinders, geons
 • Appearance-based
 • Eigenfaces
 • Appearance manifolds
 • Color indexing
 • Keypoint-based
 • Schmid & Mohr
 • Lowe
 • Video Google

• **Texture recognition**
 • Textons
 • Filter banks
 • Histograms

• **Object category recognition**
 • Pictorial structures
 • Early statistical: Late 90s face detectors
 • Constellation models
 • Bags of features
 • HOG, DPMs

• **Scene recognition**
 • Early knowledge-based
 • GIST
 • Bags of features, pyramids
So, what were the “big ideas”?

- Optimization – not procedural reasoning
- Rich descriptors of pixel values – not simple point and line features
- Data and learning – not rules
- Discriminative classifiers – not just probabilistic models
- Sliding window operations and spatial pooling
- Deformable templates